MatDEM-BASED NUMERICAL SIMULATION ANALYSIS OF YANJIAGOU LANDSLIDE EVOLUTION PROCESS
LI Xiao-song1, FAN Wen1,2, CAO Yan-bo1, QUAN Zhuo-liang1
1. School of Geology Engineering and Geomatic, Chang'an University, Xi'an 710054, China; 2. Electronic Research Institute of Engineering Investigation and Design, MIIT, Xi'an 710054, China
Abstract:Through the investigation on the basic geological characteristics of Yanjiagou landslide in Shanyang County of Shaanxi Province, the paper obtains landslide elevation data by means of drone, and establishes a MatDEM-based 3D discrete element model of the landslide movement and accumulation features, which restores the whole process of landslide occurrence and gains the characteristics of movement velocity, sliding distance, and accumulation thickness. It is considered that the Yanjiagou landslide is of high-speed type. The landslide accumulation process is divided into three stages:accelerated collision→overall sliding→deceleration accumulation. The distribution of accumulation thickness shows a general trend of increasing first and then decreasing along the movement direction, reaching the maximum at the back of accumulation body. It is proved that MatDEM is feasible to simulate the landslide evolution process.
杨海龙, 樊晓一, 张友谊, 等. 山阳烟家沟滑坡成因机制与运动特征研究[J]. 路基工程, 2016(6):30-35. Yang H L, Fan X Y, Zhang Y Y, et al. Study on formation mechanism and motion characteristics of Yanjiagou landslide in Shanyang[J]. Subgrade Engineering, 2016(6):30-35.
[2]
周明浪. 台风"苏迪罗"期间温州滑坡灾害特征及预警成果分析[J]. 地质与资源, 2017, 26(3):303-309. Zhou M L. Characteristics of landslide disaster in Wenzhou during typhoon Soudelor and analysis of early warning results[J]. Geology and Resources, 2017, 26(3):303-309.
[3]
徐晨栋, 苑康泽, 郭子坤, 等. 清子高速某工程滑坡诱发机制及治理模拟[J]. 地质与资源, 2020, 29(2):196-201. Xu C D, Yuan K Z, Guo Z K, et al. Inducement mechanism and treatment simulation of an engineering landslide on Qingzi expressway[J]. Geology and Resources, 2020, 29(2):196-201.
[4]
鲁晓兵, 王义华, 王淑云, 等. 碎屑流沿坡面运动的初步分析[J]. 岩土力学, 2004, 25(S2):598-600. Lu X B, Wang Y H, Wang S Y, et al. The primary analysis on the castic gain fow[J]. Rock and Soil Mechanics, 2004, 25(S2):598-600.
[5]
Fan X Y, Tian S J, Zhang Y Y. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J]. Journal of Mountain Science, 2016, 13(2):234-245.
[6]
郝明辉, 许强, 杨兴国, 等. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 2015, 34(3):472-479. Hao M H, Xu Q, Yang X G, et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3):472-479.
[7]
Hungr O, McDougall S. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 2009, 35(5):978-992.
[8]
Liu C, Pollard D D, Gu K, et al. Mechanism of formation of wiggly compaction bands in porous sandstone:2. Numerical simulation using discrete element method[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(12):8153-8168.
[9]
刘春, 范宣梅, 朱晨光, 等. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例[J]. 工程地质学报, 2019, 27(6):1362-1370. Liu C, Fan X M, Zhu C G, et al. Discrete element modeling and simulation of 3-dimen-sional large-scale landslide-taking Xinmocun landslide as an example[J]. Journal of Engineering Geology, 2019, 27(6):1362-1370.
[10]
杨海龙, 樊晓一, 裴向军. 基于离散元法的偏转型滑坡运动堆积特征分析[J]. 长江科学院院报, 2020, 37(2):106-111, 118. Yang H L, Fan X Y, Pei X J. DEM-based analysis of movement and accumulation characteristics of turning-type landslide[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2):106-111, 118.
[11]
李凯. 陕西山阳县中村钒矿区滑坡形成机理及早期识别研究[D]. 西安:长安大学, 2017. Li K. Study on formation mechanism and early identification of landslide in Zhongcun vanadium mine of Shanyang County, Shaanxi Province[D]. Xi'an:Chang'an University, 2017.
[12]
苏艳军. 山阳-商南钒矿带矿区斜坡破坏机理分析及地质灾害危险性评价[D]. 西安:长安大学, 2019. Su Y J. Geological disaster hazard assessments and analysis of slope failure mechanism on Shanyang-Shangnan vanadium mine belt[D]. Xi'an:Chang'an University, 2017.
[13]
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65.
[14]
谢莉, 李渝生, 曹建军, 等. 澜沧江某水电站右坝肩岩体倾倒变形的数值模拟[J]. 中国地质, 2009, 36(4):907-914. Xie L, Li Y S, Cao J J, et al. Numerical simulation of toppling rock mass deformation in the right dam abutment of a hydropower station on the Lancang River[J]. Geology in China, 2009, 36(4):907-914.
[15]
Goldenberg C, Goldhirsch I. Friction enhances elasticity in granular solids[J]. Nature, 2005, 435(7039):188-191.
[16]
李祥龙, 唐辉明, 熊承仁, 等. 岩石碎屑流运移堆积过程数值模拟[J]. 工程地质学报, 2011, 19(2):168-175. Li X L, Tang H M, Xiong C R, et al. Numerical simulation of flow and deposition process of rock avalanche[J]. Journal of Engineering Geology, 2011, 19(2):168-175.
[17]
施凤根. 基于PFC3D的文家沟滑坡高速远程运动学特征研究[D]. 北京:中国地质大学, 2014. Shi F G. The study of rapid and long-runout characteristics of Wenjiagou landslide based on PFC3D[D]. Beijing:China University of Geosciences, 2014.
[18]
刘春. 地质与岩土工程矩阵离散元分析[M]. 北京:科学出版社, 2019:5-7. Liu C. Matrix discrete element analysis of geology and geotechnical engineering[M]. Beijing:Science Press, 2019:5-7.
[19]
Liu C, Xu Q, Shi B, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103:12-20.
[20]
周喻, 王莉, 丁剑锋, 等. 多尺度节理岩体力学特性的颗粒流分析[J]. 岩土力学, 2016, 37(7):2085-2095, 2127. Zhou Y, Wang L, Ding J F, et al. Particle flow code analysis of multi-scale jointed rock mass based upon equivalent rock mass technique[J]. Rock and Soil Mechanics, 2016, 37(7):2085-2095, 2127.
[21]
胡晓波, 樊晓一, 唐俊杰. 基于离散元的高速远程滑坡运动堆积特征及能量转化研究-以三溪村滑坡为例[J]. 地质力学学报, 2019, 25(4):527-535. Hu X B, Fan X Y, Tang J J. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of Dem:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 2019, 25(4):527-535.