GEOCHEMISTRY AND SOURCE AREA ENVIRONMENT OF THE MIDDLE JURASSIC SANDSTONE IN SOUTHERN QIANGTANG BASIN
XU Lin1, XIAO Jin1, LIU Da-ming1,2, HU Lin1, LUO Shao-qiang1, TANG Hua1, ZHAO Yu3
1. Northwest Sichuan Geological Team, Sichuan Bureau of Geology and Mineral Exploration and Development, Mianyang 621000, Sichuan Province, China; 2. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China; 3. No. 6 Geological Team, Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa 851400, China
Abstract:The sandstone of Middle Jurassic Quemocuo Formation is developed in Jiangyumaluo area of southern Qiangtang Basin. The environment of sandstone source area is restored through petrogeochemical analysis. The chemical index of weathering (CIW), chemical index of alteration (CIA) parameters and A-CN-K diagram of sandstones show that the clastic compositions are intensely weathered. The index of compositional variability(ICV) and Th/Sc-Zr/Sc diagram indicate that the sandstone contains mainly the first sedimentary cycle materials, with a little recycled sediment. The Al2O3/TiO2, Th/Sc and Cr/Zr ratios of rock elements and La/Th-Hf discrimination diagram of source rocks suggest that the clastics of sandstone are mainly from the felsic source area of upper crust, mixed with a small number of basic femic rocks. The characteristics of trace elements and SiO2-K2O/Na2O, La-Th-Sc, Co-Th-Zr/10, Sc-Th-Zr/10 diagrams all indicate that the sandstones were formed in the continental margin rifting tectonic setting.
谭富文, 王剑, 王小龙, 等. 羌塘盆地雁石坪地区中-晚侏罗世碳、氧同位素特征与沉积环境分析[J]. 地球学报, 2004, 25(2):119-126. Tan F W, Wang J, Wang X L, et al. Analysis of carbon and oxygen isotope composition and sedimentary environment of the Yanshiping area of the Qiangtang Basin in Middle-Late Jurassic[J]. Acta Geoscientia Sinica, 2004, 25(2):119-126.
[2]
王建坡, 赵兵. 羌塘雁石坪中侏罗统雀莫错组地层及沉积环境[J]. 沉积与特提斯地质, 2004, 24(3):43-47. Wang J P, Zhao B. Stratigraphy and sedimentary environments of the Qoimaco Formation in the Yanshiping region, Qiangtang[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(3):43-47.
[3]
王剑, 谭富文, 王小龙, 等. 藏北羌塘盆地早侏罗世-中侏罗世早期沉积构造特征[J]. 沉积学报, 2004, 22(2):198-205. Wang J, Tan F W, Wang X L, et al. The sedimentary and tectonic characteristics of Qiangtang Basin in the Early Jurassic in Northern Xizang (Tibet)[J]. Acta Sedimentologica Sinica, 2004, 22(2):198-205.
[4]
付修根, 王剑, 吴滔, 等. 羌塘盆地胜利河地区雀莫错组地层及其古环境[J]. 中国地质, 2010, 37(5):1305-1312. Fu X G, Wang J, Wu T, et al. Stratigraphy and paleoenvironment of the Quemo Co Formation in Shengli River area, northern Tibet[J]. Geology in China, 2010, 37(5):1305-1312.
[5]
曾胜强, 王剑, 冯兴雷, 等. 北羌塘盆地沃若山地区中-下侏罗统雀莫错组一段沉积环境分析[J]. 中国地质, 2014, 41(1):162-172. Zeng S Q, Wang J, Feng X L, et al. A sedimentary environment analysis of the First Member of the Quemo Co Formation in Woruo Mountain area of the North Qiangtang Basin[J]. Geology in China, 2014, 41(1):162-172.
[6]
冯兴雷, 付修根, 谭富文, 等. 北羌塘盆地沃若山地区早侏罗世雀莫错组砂岩地球化学特征与物源判别意义[J]. 中国地质, 2016, 43(4):1227-1237. Feng X L, Fu X G, Tan F W, et al. Geochemical characteristics and tectonic significance of Early Jurassic Quemo Co Formation in Woruoshan area, North Qiangtang Basin[J]. Geology in China, 2016, 43(4): 1227-1237.
[7]
高远, 付修根, 万友利, 等. 北羌塘盆地雀莫错组三段混合沉积层系发育特征及控制因素[J]. 东北石油大学学报, 2020, 44(3):36-45, 106. Gao Y, Fu X G, Wan Y L, et al. Development features and controlling factors of mixed siliciclastic-carbonate sediments in the Member 3 of the Quemocuo Formation, Northern Qiangtang Basin[J]. Journal of Northeast Petroleum University, 2020, 44(3):36-45, 106.
[8]
占王忠, 谭富文. 北羌塘坳陷早-中侏罗世雀莫错期岩相古地理特征与成钾意义[J]. 地质论评, 2020, 66(5):1261-1274. Zhan W Z, Tan F W. Evolution of lithofacies paleogeography of the Early-Middle Jurassic Quemocuo Formation in the North Qiangtang Basin and its implication of potash formation[J]. Geological Review, 2020, 66(5):1261-1274.
[9]
王剑, 丁俊, 王成善, 等. 青藏高原油气资源战略选区调查与评价[M]. 北京:地质出版社, 2009:336. Wang J, Ding J, Wang C S, et al. Investigation and evaluation of strategic selection of oil and gas resources in Qinghai-Tibet Plateau [M]. Beijing:Geological Publishing House, 2009:336. (in Chinese)
[10]
徐琳, 罗绍强, 唐华, 等. 西藏南羌塘盆地达卓玛地区油气地质条件研究[J]. 中国地质调查, 2020, 7(5):16-24. Xu L, Luo S Q, Tang H, et al. Study on petroleum geological conditions in Dazhuom area of southern Qiangtang Basin of Tibet[J]. Geological Survey of China, 2020, 7(5):16-24.
[11]
Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2):119-139.
[12]
陈小双, 吕奥, 宋贺民, 等. 新疆阿合奇地区志留系砂岩地球化学特征及大地构造背景[J]. 古地理学报, 2018, 20(2):271-284. Chen X S, Lü A, Song H M, et al. Geochemical characteristics and tectonic history of the Silurian sandstones in Akeqi area, Xinjiang[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(2):271-284.
[13]
Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5):820-829.
[14]
计波, 焦养泉, 刘阳. 鄂尔多斯盆地东北部下侏罗统富县组底部石英砂岩成因与物源[J]. 地质通报, 2022, 41(9):1601-1612. Ji B, Jiao Y Q, Liu Y. Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin[J]. Geological Bulletin of China, 2022, 41(9):1601-1612.
[15]
Taylor S R, McLennan S M. The continental crust:Its composition and evolution[M]. Oxford:Blackwell, 1985:1-311.
[16]
Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717.
[17]
Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2):129-147.
[18]
Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5):525-542.
[19]
丁海峰, 马东升, 姚春彦, 等. 新疆阿克苏地区新元古代冰成沉积地球化学研究[J]. 地球化学, 2014, 43(3):224-237. Ding H F, Ma D S, Yao C Y, et al. A geochemistry study on Neoproterozoic glaciogenic sediments in Aksu area, Xinjiang[J]. Geochimica, 2014, 43(3):224-237.
[20]
屈李华, 刘喜方, 赵芳, 等. 北羌塘盆地三叠系康南组砂岩地球化学特征及其对物源区和构造背景的制约[J]. 西北地质, 2018, 51(4):97-113. Qu L H, Liu X F, Zhao F, et al. Geochemical characteristics of the sandstones from Triassic Kangnan Formation in North Qiangtang Basin (Tibet):Implications for provenance and tectonic setting[J]. Northwestern Geology, 2018, 51(4):97-113.
[21]
van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1985, 76(4):411-449.
[22]
Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14):2919-2940.
[23]
Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1):107-118.
[24]
Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA[J]. Chemical Geology, 1988, 70(4): 335-348.
[25]
Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall:Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4):531-542.
[26]
张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 广州:中国科学院研究生院(广州地球化学研究所), 2007. Zhang Y X. Tectonic evolution of the middle-western Bangong-Nujiang suture, Tibet[D]. Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2007.
[27]
田康志, 季长军, 伊海生, 等.南羌塘坳陷扎仁地区中侏罗统布曲组晶粒白云岩成因分析[J]. 中国地质, 2019,46(2):398-406. Tian K Z, Ji C J, Yi H S, et al. Origin of grained dolomite from the Buqu Formation of Zaring area in southern Qiangtang depression[J]. Geology in China, 2019,46(2):398-406.