INFLUENCE OF SHALE COMPONENTS ON THE PORE DEVELOPMENT DIFFERENCES BETWEEN WUFENG-LONGMAXI FORMATION AND NIUTITANG FORMATION: A Case Study of JY-1 Well in Southeast Chongqing and CY-1 Well in Northwest Hunan
XIE Zhi-tao1, HU Hai-yan2,3, YUAN Hao-pu4, LIU Ji-peng1, WANG Tao1, LIU Li-hang1
1. School of Geosciences, Yangtze University, Wuhan 430100, China; 2. School of Resources and Environment, Yangtze University, Wuhan 430100, China; 3. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China; 4. Xibu Drilling Engineering Co., Ltd., CNPC, Karamay 834000, Xingjian Autonomous Region, China
Abstract:Based on the accumulative pore volume and specific surface area by pore diameter of shale samples from JY-1 well of Wufeng-Longmaxi Formation and CY-1 well of Niutitang Formation, combined with the geochemical parameters and percentage of mineral components in samples, the paper analyzes the influence of shale components on the pore development differences between the two formations. The results show that TOC is positively correlated with micropores, indicating the organic micropores contribute to the development of shale pores, and organic micropores are more developed in the shale of Wufeng-Longmaxi Formation than that in Niutitang Formation. The positive correlation between quartz-pyrite contents and micropores indicates the primary pores and developed marginal pores contribute to the development of shale pores. The different correlations between quartz and meso-and macropores reveal the different protection degrees of quartz to the two by biogenic quartz content. The positive correlation between pyrite content and macropores reflects that pyrite can protect macropores to a certain extent in terms of pyrite content. The negative correlation between feldspar and pores shows the less obvious support of feldspar on pores due to the influence of compaction and complex structure. The unobvious correlation between carbonate minerals and pores shows the weak rigidity and instability of chemical properties and low content have no significant influence on pore development. Compared with Niutitang Formation, the high content of rigid minerals in the shale of Wufeng-Longmaxi Formation has a more favorable influence on the development of micropores (such as intergranular and marginal pores), mesopores and macropores. The negative correlations between clay minerals and micro- and mesopores indicate the intermineral pores easy to shrink under strong compaction have a negative effect on the pore development of reservoir, reflecting that the deep burial of Niutitang Formation has an unfavorable effect on the development of intermineral pores.
谢志涛, 胡海燕, 袁浩莆, 刘冀蓬, 王涛, 刘立航. 页岩组分对五峰-龙马溪组与牛蹄塘组页岩孔隙发育差异的影响——以渝东南焦页1井与湘西北慈页1井为例[J]. 地质与资源, 2021, 30(2): 143-152.
XIE Zhi-tao, HU Hai-yan, YUAN Hao-pu, LIU Ji-peng, WANG Tao, LIU Li-hang. INFLUENCE OF SHALE COMPONENTS ON THE PORE DEVELOPMENT DIFFERENCES BETWEEN WUFENG-LONGMAXI FORMATION AND NIUTITANG FORMATION: A Case Study of JY-1 Well in Southeast Chongqing and CY-1 Well in Northwest Hunan. GEOLOGY AND RESOURCES, 2021, 30(2): 143-152.
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6):689-701. Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China:characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6):689-701.
[2]
邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China:characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2):166-178.
[3]
Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6):1099-1119.
[4]
Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage:Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8):1325-1346.
[5]
田涛, 付德亮, 杨甫, 等. 米仓山-汉南隆起区牛蹄塘组页岩矿物组分与微观孔隙的关系[J]. 煤炭学报, 2018, 43(S1):236-244. Tian T, Fu D L, Yang F, et al. Relationship between mineral composition and micro-pores of Niutitang-Formation shale in Micangshan-Hannan Uplift[J]. Journal of China Coal Society, 2018, 43(S1):236-244.
[6]
周永刚. 中上扬子地块浅部褶皱逆冲格局:遥感卫星图像处理与解释[D]. 青岛:中国海洋大学, 2009. Zhou Y G. The surface-outcropped structural pattern of folds and thrusts in the Upper-Middle Yangtze block:Processing and interpretation of remote sensing satellite images[J]. Qingdao:Ocean University of China, 2009.
[7]
郭旭升. 南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218. Guo X S. Rules of two-factor enrichment for marine shale gas in southern China-understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
[8]
Hu H Y, Hao F, Lin J F, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S1l) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J]. International Journal of Coal Geology, 2017, 173:40-50.
[9]
金之钧, 郑和荣, 蔡立国, 等. 中国前中生代海相烃源岩发育的构造-沉积条件[J]. 沉积学报, 2010, 28(5):875-883. Jin Z J, Zheng R H, Cai L G, et al. Tectonic-sedimentary conditions for development of pre-Mesozoic marine source rocks in China[J]. Acta Sedimentologica Sinica, 2010, 28(5):875-883.
[10]
扈金刚. 湘西北地区富有机质页岩孔隙结构及其演化特征研究[D]. 武汉:中国地质大学, 2016. Hu J G. Study on pore structure and evolution characteristics of organic-rich shale in northwestern Hunan province[J]. Wuhan:China University of Geosciences, 2016. (in Chinese)
[11]
郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3):24-37. Guo X S, Hu D F, Wei Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3):24-37.
[12]
Hao F, Zou H Y. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J]. Marine and Petroleum Geology, 2013, 44:1-12.
[13]
郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1):29-43. Guo T L. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23(1):29-43.
[14]
戴方尧. 川东-湘西地区龙马溪组与牛蹄塘组页岩孔隙与页岩气赋存机理研究[D]. 武汉:中国地质大学, 2018. Dai F Y. The study of pores characteristics and shale gas occurrence of Longmaxi and Niutitang Formation in East of Sichuan and West of Hunan area[J]. Wuhan:China University of Geosciences, 2018.
[15]
Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids (technical report)[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758.
[16]
罗超, 刘树根, 罗立志, 等. 贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征[J]. 地质科技情报, 2014, 33(3):93-105. Luo C, Liu S G, Luo L Z, et al. Pore structure characteristics of black shale in the lower Cambrian Niutitang Formation of Nangao section in Danzhai, Guizhou province[J]. Geological Science and Technology Information, 2014, 33(3):93-105.
[17]
陈相霖, 郭天旭, 石砥石, 等. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5):52-60. Chen X L, Guo T X, Shi D S, et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi[J]. Lithologic Reservoirs, 2019, 31(5):52-60.
[18]
冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3):678-692. Feng X L, Ao W H, Tang X. Characteristics of pore development and its main controlling factors of continental shale gas reservoirs:a case study of Chang 7 member in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):678-692.
[19]
Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
[20]
Kinley T J, Cook L W, Breyer J A, et al. Hydrocarbon potential of the Barnett shale (Mississippian), Delaware Basin, West Texas and southeastern New Mexico[J]. AAPG Bulletin, 2008, 92(8):967-991.
[21]
Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
[22]
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
[23]
Hickey J J, Henk B. Lithofacies summary of the Mississippian Barnett shale, Mitchell 2 T.P. Sims well, Wise county, Texas[J]. AAPG Bulletin, 2007, 91(4):437-443.
[24]
Thyberg B, Jahren J, Winje T, et al. From mud to shale:rock stiffening by micro-quartz cementation[J]. First Break, 2009, 27(2):170-173.
[25]
Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.