OIL-BEARING PARAMETER OPTIMIZATION AND RESOURCE CALCULATION OF THE SHALE OIL IN QIJIA AND GULONG SAGS, SONGLIAO BASIN
XIAO Fei1, YANG Jian-guo1, LI Shi-chao1, YAO Yu-lai1, LI Ang1, ZHANG Li-yan1, HUANG Yi-ming1, RAN Qing-chang2,3
1. Shenyang Center of China Geological Survey, Shenyang 110034, China; 2. Exploration and Development Research Institute of Daqing Oilfield Co., Ltd., Daqing 163318, Heilongjiang Province, China; 3. Institute of Unconventional Oil and Gas, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
Abstract:There are abundant shale oil resources in the first member of Qingshankou Formation in Qijia and Gulong sags of Songliao Basin. In the past, the shale oil resources were calculated mainly based on incomplete old core data with corrected pyrolysis S1 or chloroform asphalt "A" as oil-bearing parameters. The accuracy of corrected parameters was affected by multiple factors including sample freshness, testing means and correction method, leading to certain limitations in the application of the above parameters. According to the latest development in shale oil exploration, the paper compares the applications of different oil-bearing parameters (pyrolysis S1, chloroform bitumen "A" and oil saturation) in shale oil resource calculation. The result shows that oil saturation can reflect the content of free oil and dissolved hydrocarbon, without considering the influence of adsorbed oil and correction of light hydrocarbon, heavy hydrocarbon and NSO compound. This parameter is more suitable for the calculation of shale oil resources under the condition of fresh sample test data. The plane distribution of effective shale thickness, TOC, organic maturity(Ro) and burial depth are determined on the basis of latest drilling results and test data of shale oil parameter well. The shale oil enrichment areas in the first member of Qingshankou Formation in Qijiahe and Gulong sags are 1957.23 km2 and 4509.09 km2 respectively by multifactor overlap method. Combined with the measured data of oil saturation, density and effective porosity logging interpretation data of sealed frozen samples, the resources of shale oil enriched areas in Qijia and Gulong sags are calculated as 19.79×108 t and 27.29×108 t respectively, indicating the matrix shale oil in the study area has a good exploration prospect.
肖飞, 杨建国, 李士超, 姚玉来, 李昂, 张丽艳, 黄一鸣, 冉清昌. 松辽盆地齐家和古龙凹陷页岩油含油性参数优选与资源量计算[J]. 地质与资源, 2021, 30(3): 395-404,305.
XIAO Fei, YANG Jian-guo, LI Shi-chao, YAO Yu-lai, LI Ang, ZHANG Li-yan, HUANG Yi-ming, RAN Qing-chang. OIL-BEARING PARAMETER OPTIMIZATION AND RESOURCE CALCULATION OF THE SHALE OIL IN QIJIA AND GULONG SAGS, SONGLIAO BASIN. GEOLOGY AND RESOURCES, 2021, 30(3): 395-404,305.
US Energy Information Administration. Technically recoverable shale oil and shale gas resources:An assessment of 137 shale formations in 41 countries outside the United States[EB/OL]. http://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf, 2013.
[2]
张林晔,李钜源,李政,等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展,2014,29(6):700-711. Zhang L Y, Li J Y, Li Z, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6):700-711.
[3]
柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838. Liu B, Shi J X, Fu X F, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system:A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5):828-838.
[4]
宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019,26(1):1-12. Song M S. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1):1-12.
[5]
赵贤正,周立宏,赵敏,等. 陆相页岩油工业化开发突破与实践——以渤海湾盆地沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):589-600. Zhao X Z, Zhou L H, Zhao M, et al. Breakthrough and practice of industrial development on continental shale oil:A case study on Kong-2 Member in Cangdong sag, Bohai Bay Basin[J]. China Petroleum Exploration, 2019, 24(5):589-600.
[6]
杨华,牛小兵,徐黎明,等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发,2016,43(4):511-520. Yang H, Niu X B, Xu L M, et al. Exploration potential of shale oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4):511-520.
[7]
支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534. Zhi D M, Tang Y, Yang Z F, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3):524-534.
[8]
杨建国,李士超,姚玉来,等. 松辽盆地北部陆相页岩油调查取得重大突破[J]. 地质与资源,2020,29(3):300. Yang J G, Li S C, Yao Y L, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3):300.
[9]
崔宝文,蒙启安,白雪峰,等. 松辽盆地北部石油勘探进展与建议[J]. 大庆石油地质与开发,2018,37(3):1-9. Cui B W, Meng Q A, Bai Y F, et al. Petroleum exploration progress and suggestions for north Songliao Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(3):1-9.
[10]
吴河勇,林铁锋,白云风,等. 松辽盆地北部泥(页)岩油勘探潜力分析[J]. 大庆石油地质与开发,2019,38(5):78-86. Wu H Y, Lin T F, Bai Y F, et al. Analyses of the mudstone (shale) oil exploration potential in North Songliao Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(5):78-86.
[11]
宋国奇,张林晔,卢双舫,等. 页岩油资源评价技术方法及其应用[J]. 地学前缘,2013,20(4):221-228. Song G Q, Zhang L Y, Lu S F, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4):221-228.
[12]
陈小慧. 页岩油赋存状态与资源量评价方法研究进展[J]. 科学技术与工程,2017,17(3):136-144. Chen X H. Advances in the research on the occurrence state and resources assessment of shale oil[J]. Science Technology and Engineering, 2017, 17(3):136-144.
[13]
朱日房,张林晔,李政,等. 陆相断陷盆地页岩油资源潜力评价——以东营凹陷沙三段下亚段为例[J]. 油气地质与采收率,2019,26(1):129-136. Zhu R F, Zhang L Y, Li Z, et al. Evaluation of shale oil resource potential in continental rift basin:A case study of Lower Es3 member of Shahejie Formation in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1):129-136.
[14]
柳波,何佳,吕延防,等. 页岩油资源评价指标与方法——以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报(自然科学版), 2014,45(11):3846-3852. Liu B, He J, Lv Y F, et al. Parameters and method for shale oil assessment:Taking Qinshankou Formation shale oil of Northern Songliao Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(11):3846-3852.
[15]
薛海涛,田善思,王伟明,等. 页岩油资源评价关键参数——含油率的校正[J]. 石油与天然气地质,2016,37(1):15-22. Xue H T, Tian S S, Wang W M, et al. Correction of oil content-One key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1):15-22.
[16]
薛海涛,田善思,卢双舫,等. 页岩油资源定量评价中关键参数的选取与校正——以松辽盆地北部青山口组为例[J]. 矿物岩石地球化学通报,2015,34(1):70-78. Xue H T, Tian S S, Lu S F, et al. Selection and verification of key parameters in the quantitative evaluation of shale oil:A case study at the Qingshankou Formation, Northern Songliao Basin[J] Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(1):70-78.
[17]
张金川,林腊梅,李玉喜,等. 页岩油分类与评价[J]. 地学前缘, 2012,9(5):322-331. Zhang J C, Lin L M, Li Y X, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 9(5):322-331.
[18]
宁方兴,王学军,郝雪峰,等. 济阳坳陷页岩油赋存状态和可动性分析[J]. 新疆石油天然气,2015,11(3):1-5. Ning F X, Wang X J, Hao X F, et al. An analysis in occurrence state and mobility of shale oil in Jiyang Depression[J]. Xinjiang Oil & Gas, 2015, 11(3):1-5.
[19]
卢双舫,张敏. 油气地球化学[M]. 北京:石油工业出版社,2008:19-20. Lu S F, Zhang M. Petroleum geochemistry[M]. Beijing:Petroleum Industry Press, 2008:19-20. (in Chinese)
[20]
肖飞,杨建国. 湖相泥页岩密闭冷冻测试与现场地化录井热解参数对比研究[C]. 福州:第十二届全国石油地质实验技术学术会议,2020. Xiao F, Yang J G. Comparative study of the pyrolysis parameters between laboratory test of airtight freezing samples and geochemical mud logging in the well site[C]. Fuzhou:The 12th National Academic Conference of Petroleum Geology Experimental Technology, 2020. (in Chinese)
[21]
李延钧,张烈辉,冯媛媛,等. 页岩有机碳含量测井评价方法及其应用[J]. 天然气地球科学,2013,24(1):169-175. Li Y J, Zhang L H, Feng Y Y, et al. Logging evaluation method and its application for measuring the total organic carbon content in shale gas[J]. Natural Gas Geoscience, 2013, 24(1):169-175.
[22]
Dow W G. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploration, 1977, 7:79-99.